首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34538篇
  免费   3432篇
  国内免费   3190篇
  2023年   533篇
  2022年   538篇
  2021年   941篇
  2020年   1037篇
  2019年   1236篇
  2018年   1094篇
  2017年   1161篇
  2016年   1134篇
  2015年   1300篇
  2014年   1484篇
  2013年   2082篇
  2012年   1422篇
  2011年   1669篇
  2010年   1444篇
  2009年   2000篇
  2008年   1954篇
  2007年   2067篇
  2006年   2005篇
  2005年   1969篇
  2004年   1802篇
  2003年   1512篇
  2002年   1449篇
  2001年   990篇
  2000年   946篇
  1999年   833篇
  1998年   693篇
  1997年   596篇
  1996年   524篇
  1995年   573篇
  1994年   526篇
  1993年   448篇
  1992年   376篇
  1991年   326篇
  1990年   280篇
  1989年   260篇
  1988年   206篇
  1987年   198篇
  1986年   150篇
  1985年   207篇
  1984年   206篇
  1983年   146篇
  1982年   165篇
  1981年   109篇
  1980年   137篇
  1979年   85篇
  1978年   69篇
  1977年   46篇
  1976年   51篇
  1973年   43篇
  1972年   29篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
Biologists and philosophers have been extremely pessimistic about the possibility of demonstrating random drift in nature, particularly when it comes to distinguishing random drift from natural selection. However, examination of a historical case – Maxime Lamotte’s study of natural populations of the land snail, Cepaea nemoralis in the 1950s – shows that while some pessimism is warranted, it has been overstated. Indeed, by describing a unique signature for drift and showing that this signature obtained in the populations under study, Lamotte was able to make a good case for a significant role for␣drift. It may be difficult to disentangle the causes of drift and selection acting in a population, but it is not (always) impossible.  相似文献   
42.
Aim Phylogenetic and phenotypic patterns among coexisting banksias (Banksia, Proteaceae) in the infertile, fire‐prone landscapes of south‐western Australia were examined for evidence of community structuring. It was expected that closely related species would be spatially clustered (underdispersed) as a consequence of widespread recent speciation, strong edaphic fidelity and low dispersability. We also expected that edaphic filtering would result in phenotypic clustering of traits related to habitat specialization and that competitive exclusion among closely related species with similar regeneration biology and growth form would result in phenotypic overdispersion of these latter traits. Location Southwest Australian Floristic Region (SWAFR). Methods Based on published data for coexistence (richness and frequency) of Banksia species at 40 sites in the three floristic provinces, phylogenetic, soil type and morphological mean pairwise distance and mean nearest taxon distance were calculated for each site and compared with null communities. Patterns of co‐occurrence were examined at the local and subregional (provincial) scales. Results Of the 40 sites assessed, 21–30 displayed phylogenetic clustering of Banksia species (5–11 significantly) such that, overall, co‐occurring taxa were more closely related than expected by chance. Banksias in the Transitional Rainfall and Southeast Coastal Provinces were more likely to display phylogenetic clustering than in the High Rainfall Province. A significant trend for phylogenetic clustering associated with edaphic specialization (27–30 sites) was observed, as well as a significant trend for phenotypic overdispersion associated with growth form (25–28 sites). Results for regeneration biology depended on the metric used. Main conclusions We demonstrate spatial clustering of closely related banksias at the local and provincial scales, consistent with their restricted distribution (recent widespread speciation, patchy habitat availability and limited dispersability) in this geologically old and stable region. The clustering of closely related species may also be a consequence of habitat filtering linked to edaphic fidelity in the SWAFR flora, while overdispersion in growth form suggests that functional divergence favours coexistence in Banksia communities.  相似文献   
43.
Aim To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host plant as a case study. Location The Alps. Methods We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host‐plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice‐based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions Species‐specific interactions are scarce in alpine habitats because glacial cycles have limited the opportunities for co‐evolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at a large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host dependence of the beetle, which locally limits the establishment of dispersing insects.  相似文献   
44.
Efforts to restore ponderosa pine ecosystems to open, park‐like conditions that predominated prior to European‐American settlement result in altered stand structure and increased landscape heterogeneity, potentially altering habitat suitability for invertebrates and other forest organisms. We examined the responses of two butterfly species, Colias eurytheme and Neophasia menapia, to microclimatic changes at structural edges created by experimental restoration treatments in northern Arizona. We monitored microclimate, including air temperature, light intensity, and vapor pressure deficit (VPD), on several mornings during butterfly releases. We placed adult butterflies at east‐ and west‐facing edges approximately one half‐hour before dawn to determine their behavioral response to microclimatic differences between east‐ and west‐facing edges. After sunrise, all three microclimatic variables were higher at east‐facing edges, and the difference in microclimate between the two edge orientations increased through early morning. For both species, butterflies placed at east‐facing edges flew earlier than butterflies at west‐facing edges. Colias eurytheme, an open‐habitat species, tended to move toward the treated forest during initial flight, while movements of Neophasia menapia, a forest‐dwelling species, did not differ from random flight. Our results indicate that butterflies respond to microclimatic factors associated with restoration treatments, while responses to structural changes in habitat vary among species, based on habitat and food plant preferences. These changes in forest structure and microclimate may affect the distribution of many mobile invertebrates in forested landscapes undergoing restoration treatments.  相似文献   
45.
Aim The Chilean endemic Dioscorea biloba (Dioscoreaceae) is a dioecious geophyte that shows a remarkable 600 km north–south disjunction in the peripheral arid area of the Atacama Desert. Its restricted present‐day distribution and probable Neogene origin indicate that its populations have a history linked to that of the Atacama Desert, making this an ideal model species with which to investigate the biogeography of the region. Location Chile, Atacama Desert and peripheral arid area. Methods Two hundred and seventy‐five individuals from nine populations were genotyped for seven nuclear microsatellite loci, and plastid trnL–F and trnT–L sequences were obtained for a representative subset of these. Analyses included the estimation of genetic diversity and population structure through clustering, Bayesian and analysis of molecular variance analyses, and statistical parsimony networks of chloroplast haplotypes. Isolation by distance was tested against alternative dispersal hypotheses. Results Microsatellite markers revealed moderate to high levels of genetic diversity within populations, with those from the southern Limarí Valley showing the highest values and northern populations showing less exclusive alleles. Bayesian analysis of microsatellite data identified three genetic groups that corresponded to geographical ranges. Chloroplast phylogeography revealed no haplotypes shared between northern and southern ranges, and little haplotype sharing between the two neighbouring southern valleys. Dispersal models suggested the presence of extinct hypothetical populations between the southern and northern ranges. Main conclusions Our results are consistent with prolonged isolation of the northern and southern groups, mediated by the life‐history traits of the species. Significant isolation was revealed at both large and moderate distances as gene flow was not evident even between neighbouring valleys. Bayesian analyses of microsatellite and chloroplast haplotype diversity identified the southern area of Limarí as the probable area of origin of the species. Our data do not support recent dispersal of D. biloba from the southern range into Antofagasta, but indicate the fragmentation of an earlier wider range, concomitant with the Pliocene–Pleistocene climatic oscillations, with subsequent extinctions of the Atacama Desert populations and the divergence of the peripheral ones as a consequence of genetic drift.  相似文献   
46.
47.
In large populations, genetically distinct phenotypic morphs can be maintained in equilibrium (at a 1 : 1 ratio in the simplest case) by frequency‐dependent selection, as shown by Sewall Wright. The consequences of population fragmentation on this equilibrium are not widely appreciated. Here, I use a simple computational model to emphasize that severe fragmentation biases the morph ratio towards the homozygous recessive genotype through drift in very small populations favouring the more common recessive allele. This model generalizes those developed elsewhere for heterostylous plants and major histocompatibility complex alleles, emphasizes one particular outcome and avoids the restricting assumptions of more analytical models. There are important implications for both fundamental evolutionary biology and conservation genetics. I illustrate this with a range of examples but refer particularly to shell polymorphism in snails. These examples show how habitat fragmentation could have a direct and often unappreciated effect on species at the level of their population genetics.  相似文献   
48.
49.
Interpopulation hybridization can increase the viability of small populations suffering from inbreeding and genetic drift, but it can also result in outbreeding depression. The outcome of hybridization can depend on various factors, including the level of genetic divergence between the populations, and the number of source populations. Furthermore, the effects of hybridization can change between generations following the hybridization. We studied the effects of population divergence (low vs. high level of divergence) and the number of source populations (two vs. four source populations) on the viability of hybrid populations using experimental Drosophila littoralis populations. Population viability was measured for seven generations after hybridization as proportion of populations facing extinction and as per capita offspring production. Hybrid populations established at the low level of population divergence were more viable than the inbred source populations and had higher offspring production than the large control population. The positive effects of hybridization lasted for the seven generations. In contrast, at the high level of divergence, the viability of the hybrid populations was not significantly different from the inbred source populations, and offspring production in the hybrid populations was lower than in the large control population. The number of source populations did not have a significant effect at either low or high level of population divergence. The study shows that the benefits of interpopulation hybridization may decrease with increasing divergence of the populations, even when the populations share identical environmental conditions. We discuss the possible genetic mechanisms explaining the results and address the implications for conservation of populations.  相似文献   
50.
The pathogens Vibrio cholerae and Haemophilus influenzae use tripartite ATP-independent periplasmic transporters (TRAPs) to scavenge sialic acid from host tissues. They use it as a nutrient or to evade the innate immune system by sialylating surface lipopolysaccharides. An essential component of TRAP transporters is a periplasmic substrate binding protein (SBP). Without substrate, the SBP has been proposed to rest in an open-state, which is not recognised by the transporter. Substrate binding induces a conformational change of the SBP and it is thought that this closed state is recognised by the transporter, triggering substrate translocation. Here we use real time single molecule FRET experiments and crystallography to investigate the open- to closed-state transition of VcSiaP, the SBP of the sialic acid TRAP transporter from V. cholerae. We show that the conformational switching of VcSiaP is strictly substrate induced, confirming an important aspect of the proposed transport mechanism. Two new crystal structures of VcSiaP provide insights into the closing mechanism. While the first structure contains the natural ligand, sialic acid, the second structure contains an artificial peptide in the sialic acid binding site. Together, the two structures suggest that the ligand itself stabilises the closed state and that SBP closure is triggered by physically bridging the gap between the two lobes of the SBP. Finally, we demonstrate that the affinity for the artificial peptide substrate can be substantially increased by varying its amino acid sequence and by this, serve as a starting point for the development of peptide-based inhibitors of TRAP transporters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号